МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ДАГЕСТАН

Государственное бюджетное профессиональное образовательное учреждение «Технический колледж им. Р.Н. Ашуралиева»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ПРАКТИЧЕСКИХ ЗАДАНИЙ

ОП.11 Основы геофизических и гидродинамических исследований скважин

по специальности среднего профессионального образования

21.02.02. Бурение нефтяных и газовых скважин

ДЛЯ СТУДЕНТОВ ОЧНОЙ И ЗАОЧНОЙ ФОРМ ОБУЧЕНИЯ

УДК 532.5: 622.276

Рецензенты:

Давудов И.А., ст. преподаватель кафедры «Эксплуатации и обслуживания объектов транспорта нефти и газа, и продуктов переработки» ДГТУ,

Алиев Р.М., доктор технических наук, генерального директор ООО «Геотермнефтегаз»

Методические рекомендации к выполнению практических заданий по дисциплине ОП.11 «Основы геофизических и гидродинамических исследований скважин» специальности среднего профессионального образования 21.02.02. Бурение нефтяных и газовых скважин

Разработчик:

Преподаватель специальных дисциплин ГБПОУ РД «Технический колледж им. Р.Н. Ашуралиева» Курбанов Рашид Алибекович

Методические указания для выполнения практических заданий являются частью программы подготовки специалистов среднего звена (далее - ППССЗ) по специальности 21.02.02 "Бурение нефтяных и газовых скважин".

Методические указания содержат краткое изложение теоретического материала и практические задания для выполнения контрольной работы по дисциплине.

Рекомендовано для студентов по выполнению лабораторных заданий по дисциплине ОП.11 «Основы геофизических и гидродинамических исследований скважин» специальности среднего профессионального образования 21.02.02 «Бурение нефтяных и газовых скважин».

Рассмотрено:			
на заседании нефтегазо	овых ди	сциплин	
Протокол № от «_	>>	20	_Γ
Председатель	/P A	Курбанов/	

Задача № 1.

Обработка данных исследований нефтедобывающих скважин при установившихся режимах

Цель работы: Построить и обработать индикаторную диаграмму; определить коэффициент проницаемости пласта.

Указания по выполнению работы:

- 1. Построить индикаторную диаграмму, оценить закон фильтрации.
- 2. Произвести обработку индикаторной диаграммы в соответствии с установленным законом фильтрации, определить коэффициент проницаемости.
- 3. Для одного, произвольно выбранного режима, определить значение (значения) фильтрационного сопротивления (фильтрационных сопротивлений).
- 4. При обработке учесть гидродинамическое несовершенство скважины, характеризующееся следующими параметрами: степень вскрытия пласта 30 % (для чётных вариантов) и 70 % (ля нечётных вариантов); плотность перфорационных отверстий 15 отв/м, их диаметр 1 см.

Исходные данные для выполнения работы представлены в табл.П1.

Краткие теоретические сведения.

Технология проведения гидродинамических исследований скважин при установившихся режимах заключается в последовательном измерении дебитов скважин на различных установившихся режимах ее эксплуатации, то есть при различных забойных давлениях Рс. Кратко последовательность проведения основных операций можно представить следующим образом:

•Скважина работает при каком-либо установившемся режиме (то есть ее забойное давление и дебит Q не изменяются, или практически не изменяются с течением времени). Данный режим принимают в качестве одного из режимов исследования. Для данного режима выполняются замеры забойного давления и дебита. В механизированных скважинах, необорудованных

глубинными измерительными приборами, проводят регистрацию устьевых параметров с последующим их пересчетом в забойное давление.

- Режим работы скважин изменяется путем смены штуцера (в фонтанных скважинах), либо параметров работы насосов в механизированных.
- •По истечении времени, необходимого для стабилизации процессов в скважине (определяется индивидуально для конкретных условий), на следующем режиме также выполняют измерения забойного давления и дебита.
- •Таким образом выполняются замеры на шести восьми режимах эксплуатации скважины. При этом желательным является проведение исследований на широком диапазоне изменения забойных давлений.
- •По окончании исследований скважину, как правило, закрывают для регистрации пластового давления Рпл.

Выполненные таким образом замеры позволяют получить информацию о дебитах скважин для различных забойных давлений. Далее, при наличии известного пластового давления Рпл, для каждого из режимов вычисляется величина депрессии (Δ Pпл) как разность между пластовым давлением и забойным давлением для данного режима.

Далее строят график в координатах «Дебит – Депрессия», который называется индикаторной диаграммой (рис.1). По виду индикаторной диаграммы можно сделать вывод об особенностях фильтрации жидкости к исследуемой скважине, и, в частности, о законе фильтрации.

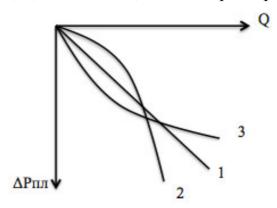


Рис.1 — Типовые формы простейших индикаторных диаграмм нефтедобывающих скважин

Если индикаторная диаграмма имеет вид прямой, выходящей из начала координат (№1 на рис.1), то в зоне дренирования пласта исследуемой скважиной происходит фильтрация жидкости по линейному закону; приток может быть описан формулой Дюпюи:

$$Q = \frac{2\pi kh}{\mu} \cdot \frac{P_{\Pi\Pi} - P_{c}}{Ln\frac{r_{k}}{r_{c}}};$$
(1)

где k — коэффициент проницаемости пласта; h — его толщина; μ — динамическая вязкость нефти; r_{κ} , r_{c} — радиусы, соответственно, контура питания и скважины.

Одной из вероятных причин нелинейности индикаторной диаграммы (выпуклости к оси дебитов, кривая № 2 на рис.1) является нарушение закона фильтрации вследствие возникновения инерционной составляющей фильтрационного сопротивления. В качестве уравнении притока в таком случае используют двучленную формулу:

$$\Delta P_{\Pi \Pi} = AQ + BQ^2 \tag{2}$$

где A, B – коэффициенты фильтрационных сопротивление, обусловленные, соответственно, вязкостным трением и инерцией.

Кроме нарушения закона фильтрации, к искривлению индикаторной диаграммы и ее выпуклости к оси дебитов (№ 2 на рис.1) могут приводить и другие факторы, например, разгазирование нефти в пласте, деформации коллектора и др.

В случае, если вероятной причиной искривления индикаторной диаграммы считается разгазирование нефти, ее интерпретация может быть проведена с использованием вместо давления функции Христиановича Н, учитывающей процессы, сопровождающие процесс разгазирования. В этом случае формула дебита принимает вид:

$$Q = \frac{2\pi kh}{\mu} \cdot \frac{H_{\Pi\Pi} - H_c}{Ln \frac{r_k}{r_c}};$$
(3)

где $H_{пл}$, H_c — соответственно, значения функции Христиановича для пластового и забойного давлений.

Вычисление значений функции Христиановича может быть выполнено по следующей схеме:

$$P_{\pi\pi} \to P_{\pi\pi}^* \to H_{\pi\pi}^* \to H_{\pi\pi}$$

$$P_c \to P_c^* \to H_c^* \to H_c$$

где P^* , H^* - соответственно, безразмерные давление и функция Христиановича, определяемые следующим образом:

$$P^* = \frac{P}{P_{ar} \cdot \xi} \tag{4}$$

$$H^* = \frac{H}{P_{aT} \cdot \xi} \tag{5}$$

где

$$\xi = \Gamma \cdot \frac{\mu_{\Gamma}}{\mu} \tag{6}$$

В формулах (4) – (6): μ_{Γ} – динамическая вязкость газа; Γ – газовый фактор; P_{ar} – атмосферное давление.

Безразмерные значения функции Христиановича могут быть вычислены по известным значениям безразмерного давления в соответствии с формулами:

$$H^* = 0.4 \cdot P^*$$
 при $P^* \le 15$ (7)

$$H^* = 0.64 \cdot P^* - 3.6$$
 при $15 < P^* \le 40$ (8)

$$H^* = 0.72 \cdot P^* - 6.8 \text{ при } P^* > 40$$
 (9)

Вогнутость индикаторной диаграммы (кривая № 3 на рис.1) к оси дебитов свидетельствует о возможном подключении в период исследования ранее не работавших пропластков либо о нарушении технологии проведения замеров. Кроме представленных простейших видов индикаторных диаграмм существуют более сложные, обусловленные, например, проявлением неньютоновских свойств нефти и др.

Обработка линейной индикаторной диаграммы заключается в вычислении коэффициента проницаемости из формулы Дюпюи; при этом

дебит и депрессия принимаются по координатам любой точки индикаторной диаграммы, лежащей непосредственно на прямой.

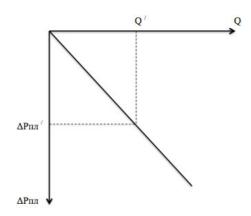


Рис.2 — Схема обработки линейной индикаторной диаграммы.

По соотношению дебита и депрессии для выбранной точки определяют величину коэффициента продуктивности скважины K_{npon} :

$$K_{\text{прод}} = \frac{Q^{/}}{\Delta P^{/}} \tag{10}$$

из которого затем вычисляют коэффициент проницаемости пласта:

$$k = \frac{K_{\text{прод}} \cdot \mu \cdot \ln r_{\kappa} / r_{c}}{2\pi h}$$
 (11)

Обработка нелинейной индикаторной диаграммы (при принятии гипотезы о нарушении закона фильтрации как причины ее отклонения от прямой) может быть выполнена в соответствии с двухчленной формулой притока. Для этого формулу (2) записывают в виде (приводят к уравнению прямой)%

$$\frac{\Delta P_{\Pi \Pi}}{O} = A + BQ$$

Индикаторная диаграмма перестраивается в координатах $\left(\frac{\Delta P_{\Pi \pi}}{Q},Q\right)$ (рис.3). Целью перестроения является приведение графика к прямолинейному виду (для упрощения дальнейшей обработки). Полученная прямая линия отсекает на оси ординат отрезок A, являющийся, по сути, величиной коэффициента фильтрационного сопротивления, обусловленного

вязкостным трением. Снимая значение данного параметра с графика, вычисляют величину коэффициента проницаемости пласта:

$$k = \frac{\mu}{2\pi Ah} \cdot \ln \frac{r_{K}}{r_{C}} \tag{12}$$

По углу наклона прямой определяют коэффициент $B = tg\alpha$

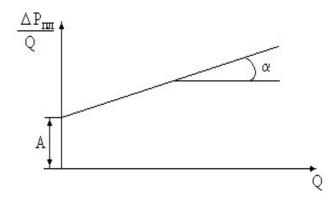


Рис.3 — Схема обработки индикаторной диаграммы по двучленной формуле притока нефти

Если исследуемая скважина характеризуется гидродинамическим несовершенством, то в используемых при обработке формулах вместо радиуса скважины (r_c) подставляется величина приведенного радиуса скважины (r_{c пр}). Порядок вычисления приведенного радиуса скважины рассмотрен в учебном пособии «Подземная гидромеханика. И.Н. Пономарева, В.А. Мордвинов». Графики для определения коэффициента, учитывающего гидродинамическое несовершенство скважины, представлены в Приложении 3.

Задача № 2.

Обработка данных исследований газовых скважин при установившихся режимах.

Цель работы: Построить и обработать индикаторную диаграмму газовой скважины; определить коэффициент проницаемости пласта.

Указания по выполнению работы

- 1. Построить индикаторную диаграмму, оценить закон фильтрации.
- 2. Произвести обработку индикаторной диаграммы в соответствии с установленным законом фильтрации, определить коэффициент проницаемости.
- 3. Для одного, произвольно выбранного режима определить значение (значения) фильтрационного сопротивления (фильтрационных сопротивлений).
- 4. Газ считать идеальным, процесс изотермическим.

Исходные данные для выполнения работы представлены в табл.П.2

Краткие теоретические сведения.

Гидродинамические исследования газовых скважин при установившихся режимах (методом установившихся отборов) осуществляют по технологии, схожей с технологией исследования нефтедобывающих скважин. По данным замеров также строится индикаторная диаграмма, вид которой позволяет сделать вывод о законе фильтрации газа.

Формулы притока газа имеют следующий вид:

для линейного закона

$$Q_{aT} = Q_{M}/\rho_{aT} = \frac{\pi kh}{\mu \cdot P_{aT}} \cdot \frac{P_{\kappa}^{2} - P_{c}^{2}}{\ln r_{\kappa}/r_{c}}$$

$$(13)$$

для нелинейного закона

$$P_{K}^{2} - P_{C}^{2} = AQ_{aT} + BQ_{aT}^{2}$$
 (14)

где: $P_{a\tau}$ – атмосферное давление (при решении задач принять равным 0,1 МПа); A, B – коэффициенты фильтрационных сопротивлений (обусловленных проявлением вязкостного трения и инерции, соответственно).

Поскольку даже для линейного закона фильтрации газа индикаторная диаграмма скважины в координатах «Дебит — Депрессия» никогда не будет иметь линейный вид, для установления закона фильтрации строят график в координатах « $P_{\kappa}^2 - P_{c}^2$, $Q_{a\tau}$ ».

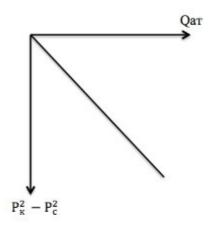


Рис.4 — Индикаторная диаграмма газовой скважины при существовании линейного закона фильтрации

Обработка линейной индикаторной диаграммы газовой скважины осуществляется в той же последовательности, что и нефтедобывающей.

Если в координатах « $P_{\kappa}^2 - P_{c}^2$, $Q_{a\tau}$ » индикаторная диаграмма нелинейна, это свидетельствует о нарушении закона фильтрации газа. Данное явление является довольно распространенным в практике исследования газовых скважин, поскольку фильтрация газа, как правило, происходит при весьма высоких скоростях, что сопровождается возникновением инерционной составляющей фильтрационного сопротивления.

Индикаторная диаграмма газовой скважины при фильтрации по нелинейному закону строится в координатах $\frac{P_\kappa^2 - P_c^2}{Q_{ar}}$, Q_{ar} и имеет вид прямой линии с угловым коэффициентом В и отрезком A, отсекаемым на оси

ординат. По значению этого отрезка (снимается с графика) можно определить коэффициент проницаемости пласта.

$$k = \frac{\mu P_{aT}}{\pi Ah} \cdot \ln r_{\kappa} / r_{c} \tag{15}$$

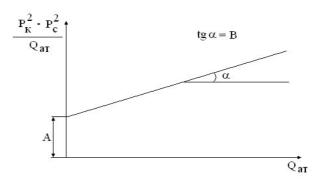


Рис.5 — Индикаторная диаграмма газовой скважине при обработке по двучленной формуле притока

Задача № 3.

Обработка кривых восстановления давления методами без учета послепритока.

Цель работы: Построить и обработать кривую восстановления давления, определить фильтрационные характеристики коллектора в удаленной от скважины зоне, оценить состояние призабойной зоны пласта (ПЗП).

Указания по выполнению работы

- 1. Построить кривую восстановления давления в координатах в соответствии с заданным в исходных данных методом обработки.
- 2. Произвести обработку кривой восстановления давления, вычислить фильтрационные характеристики удаленной зоны пласта. При этом для чётных вариантов необходимо использовать метод касательной, для нёчетных метод Хорнера.
- 3. Определить скин-фактор, дать оценку состояния ПЗП.
- 4. При необходимости принять время работы скважины на установившемся режиме до остановки на исследование равным одному месяцу.
- 5. Коэффициенты объемного сжатия принять равными $1 \cdot 10^{-10}$ 1/Па (для породы, $10 \cdot 10^{-10}$ 1/Па (для жидкости).

Исходные данные для выполнения работы представлены в табл.П.3

Краткие теоретические сведения.

Данный метод исследования скважин основан теории неустановившейся фильтрации жидкости. Самый распространенный вид исследования скважин при неустановившихся режимах – снятие кривой Для скважину, восстановления давления. ЭТОГО работающую при установившемся режиме ($P_c = const$, Q = const), останавливают и фиксируют темпы восстановления забойного давления (забойные давления в различные

моменты времени t после остановки скважины). По результатам замеров строится график – кривая восстановления давления (КВД) – рис.6.

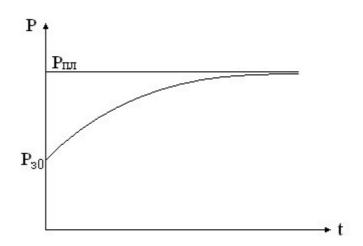


Рис.6 — Кривая восстановления давления в координатах P – t

Кривую восстановления давления обрабатывают с целью получения той или иной информации о строении и свойствах пластовой системы. Основное различие всех методов заключается в том, при помощи какого уравнения описывают процесс восстановления давления, какие факторы учитывает, а какие – нет, данное уравнение.

Одним из главных факторов, оказывающих влияние на процесс восстановления давления и график КВД, является так называемый послеприток, или постэксплуатационный приток (в зарубежной практике это явление обозначается аббревиатурой ВСС, что означает «влияние ствола скважины»). Под послепритоком понимается поступление из пласта в скважину после ее остановки значительных объемов флюида, обусловленное наличием объема в стволе скважины, который может быть заполненным. Послеприток постепенно затухает спустя некоторое время после остановки скважины.

В связи со значительным влиянием описанного выше явления на процесс восстановления давления все методы обработки КВД принято делить на две группы: с учетом и без учета послепритока. Методы без учета послперитока значительно менее трудоемки, чем методы с его учетом, и поэтому в больше

степени распространены. Наиболее распространенными методами без учета послепритока считаются метод касательной и Хорнера.

Метод касательной

С некоторыми допущениями процесс восстановления забойного давления в скважине можно описать так называемым основным уравнением упругого режима:

$$\Delta P = P_{ct} - P_{c0} = \frac{Q\mu}{4\pi kh} \cdot \ln\left(\frac{2,246\chi t}{r_c^2}\right)$$
 (16)

где χ — пьезопроводность пласта; P_{ct} , P_{c0} — соответственно, забойные давления спустя период времени t после остановки скважины и в момент начала исследования (t=0).

Уравнение (16) можно переписать:

$$\Delta P = \frac{Q\mu}{4\pi kh} \cdot \left(\ln \frac{2,246\chi t}{r_c^2} \right) = \frac{Q\mu}{4\pi kh} \cdot \ln \frac{2,246\chi}{r_c^2} + \frac{Q\mu}{4\pi kh} \cdot \ln t$$
 (17)

ИЛИ

$$\Delta P = A + B \cdot lnt \tag{18}$$

где
$$A = \frac{Q\mu}{4\pi kh} \cdot \ln \frac{2,246\chi}{r_c^2};$$
 $B = \frac{Q\mu}{4\pi kh}$

Формула для коэффициента В может быть также представлена в виде:

$$B = \frac{Q}{4\pi\epsilon} \tag{19}$$

где ε — комплексная фильтрационная характеристика коллектора, называемая коэффициентом гидропроводности: $\varepsilon = \frac{kh}{\mu}$.

В соответствии с формулой (18) КВД в координатах «ΔР – ln t_» является прямой линией. Однако под влиянием уже описанного послепритока, а также зональной неоднородности коллектора (наличие призабойной зоны с проницаемостью, отличной от остальной, удаленной от скважины, части

пласта) форма фактического графика на начальном участке отклоняется от теоретического вида, то есть от прямой (рис.7).

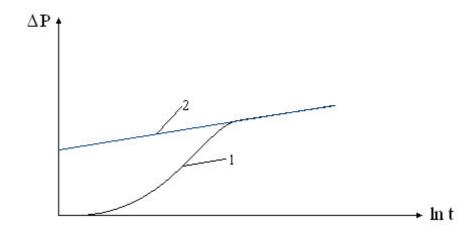


Рис.7 — Фактическая (1) и теоретическая (2) кривые восстановления давления

Для обработки следует выбирать участок, неискаженный влиянием послепритока и зональной неоднородности коллектора: как правило это заключительный прямолинейный участок, на котором КВД приближается к своей асимптоте. Продолжением выделенного прямолинейного участка до оси ординат определяют значении A, по уклону этого участка – B (B = $tg \alpha$) (рис.8). Коэффициенты A и B, определенные по графику, в свою очередь, являются составляющими уравнения (17), то есть получив их значения путем обработки графика, при известных прочих параметрах, можно определить искомые значения гидропроводности и проницаемости.

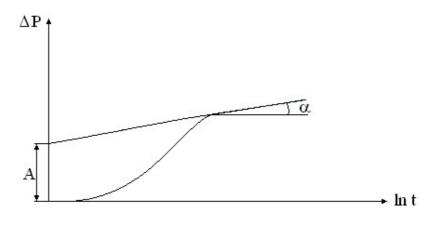


Рис.8 — Схема обработки КВД

Таким образом, обработка кривой восстановления давления в соответствии с методом касательной проводится по следующей схеме:

- 1) Построение графика КВД в координатах « $\Delta P \ln t$ ».
- 2) Выделение прямолинейного участка для обработки. При этом участок, выделенный для обработки, должен быть максимально представительным.
- 3) Определение уклона В выделенного участка и отрезка А, отсекаемого его продолжением на оси ординат.
- 4) Определение коэффициента гидропроводности:

$$\varepsilon = \frac{Q}{4\pi B} \tag{20}$$

5) Определение коэффициента проницаемости:

$$k = \frac{\varepsilon \cdot \mu}{h} \tag{21}$$

обработке Вычисленные КВД касательной при методом фильтрационные характеристики (проницаемость и гидропроводность) характеризуют удаленную зону пласта, поскольку они получены по участку КВД ДЛЯ заключительного периода исследования, когда волна перераспределения давления, вызванная остановкой скважины, достигла периферийной части зоны дренирования.

Для решения важнейшей практической задачи — оценки состояния призабойной зоны пласта (ПЗП), метод касательной может быть продолжен и сведен к определению скин-фактора S.

Скин-фактор — безразмерный параметр, характеризующий дополнительные потери давления вблизи скважины при движении к ней флюида. Поскольку основной причиной наличия дополнительных потерь давления является зональная неоднородность коллектора, в практике принято считать, что скин-фактор характеризует состояние призабойной зоны.

Порядок трактовки величины скин-фактора при оценке состояния ПЗП следующий:

- положительное значение скин-фактора (S > 0) свидетельствует об ухудшении проницаемости коллектора в ПЗП;
- отрицательное значение скин-фактора (S < 0) является признаком улучшения проницаемости в ПЗП (улучшенного состояния ПЗП);
- если значение скин-фактора равно (примерно равно) нулю, можно сделать вывод о зональной однородности коллектора.

Порядок определения величины скин-фактора следующий:

1) Определение приведенного радиуса скважины:

$$r_{c np} = \sqrt{\frac{2,246 \cdot \chi}{e^{\frac{A}{B}}}} \tag{22}$$

где A, B – параметры, определяемые при обработке КВД методом касательной.

Пьезопроводность пласта может быть определена:

$$\chi = \frac{k}{\mu \cdot (m \cdot \beta_{H} + \beta_{n})} \tag{23}$$

где $\beta_{\scriptscriptstyle H}$, $\beta_{\scriptscriptstyle \Pi}$ — коэффициенты объемного сжатия нефти и породы, соответственно; m — коэффициент пористости.

2) Определение скин-фактора:

$$S = ln \frac{r_c}{r_{c np}} \tag{24}$$

Метод Хорнера

Метод Хорнера учитывает продолжительность работы скважины до остановки на исследование. Основан метод на уравнении:

$$\Delta P = \frac{Q\mu}{4\pi kh} \cdot \ln \frac{T+t}{t} \tag{25}$$

где T – продолжительность работы скважины на установившемся режиме (с постоянным дебитом Q) до остановки.

Обработка КВД по методу Хорнера ведется в координатах « $\Delta P - ln \frac{T+t}{t}$ » (рис.9). В этих координатах на КВД также выбирается прямолинейный участок, который в дальнейшем обрабатывается.

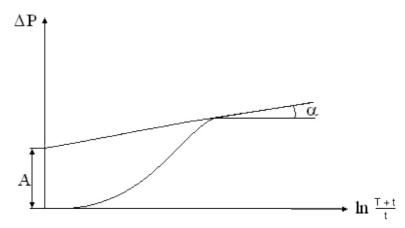


Рис.9 — Обработка КВД методом Хорнера

Порядок обработки КВД по методу Хорнера следующий:

- 1) Построение графика КВД в координатах « $\Delta P ln \frac{T+t}{t}$ ».
- 2) Выделение прямолинейного участка для обработки.
- 3) Определение уклона В выделенного участка.
- 4) Определение коэффициента гидропроводности по формуле (20).
- 5) Определение коэффициента проницаемости по формуле (21).

Формулы для определения коэффициентов гидропроводности, проницаемости и скин-фактора по методу Хорнера аналогичны таковым для метода касательной.

Список рекомендуемой литературы

Основная литература

1 Гидродинамические исследования нефтяных скважин : пер. с англ. / А. Чодри .— Москва : Премиум Инжиниринг, 2011 .— VII-XIX, 699 с.

Дополнительная литература

Учебные и научные издания

- 1 Современные методы гидродинамических исследований скважин : справочник инженера по исследованию скважин : учебное пособие для вузов / М. Л. Карнаухов, Е. М. Пьянкова .— Москва : Инфра-Инженерия, 2010 .— 430 с.
- 2 Подземная гидромеханика : учебное пособие / И. Н. Пономарева, В. А. Мордвинов ; Пермский государственный технический университет .— Пермь : Изд-во ПГТУ, 2009 .— 136 с.
- 3 Гидродинамические методы исследования скважин и пластов / С. Н. Бузинов, И. Д. Умрихин .— Москва : Недра, 1973 .— 246 с.

Периодические издания

- 1 Нефтяное хозяйство: научно-технический и производственный журнал / ЗАО «Издательство «Нефтяное хозяйство». в ПНИПУ 1994-2013 . Издается с 1920 г.
- 2 Геология, геофизика и разработка нефтяных и газовых месторождений : научно-технический журнал / Всероссийский научно-исследовательский институт организации, управления и экономики нефтегазовой промышленности .— Москва : ВНИИОЭНГ. В ПНИПУ 1994 1999, 2001 2013. Издается с 1992 г.
- 3 Вестник ПНИПУ. Геология. Нефтегазовое и горное дело. Пермь: Издво ПНИПУ. в ПНИПУ 1994-2016. Издается с 1994 г..

Требования к оформлению контрольной работы

Контрольная работа студента очной или заочной формы обучения состоит из трех задач (№ 1, 2 и 3). Исходные данные для решения задач принимаются из представленных в Приложении 1 таблиц. Номер варианта принимается по последним двум цифрам в зачетной книжке, если они образуют число, менее 50. В противном случае номер варианта принимается по последний цифре в зачетной книжке. Например, если номер зачетной книжки заканчивается на 34, студент решает задачи в соответствии с вариантом № 34. Если номер зачетной книжки заканчивается на 67, студент решает задачи в соответствии с вариантом № 7.

Контрольная работа оформляется на листах формата A4 (на компьютере или вручную, но разборчиво), скрепляется степлером или скоросшивателем. Образце титульного листа контрольной работы приведен в Приложении 2. Контрольные работы, оформленные с нарушением настоящих требований, проверке не подлежат.

В текстовом пояснении к задачам должны быть приведены все сведения и формулы, которые используются при выполнении работы. Расчетная часть поясняется необходимым текстом. Результаты решения приводятся в СИ, а также во внесистемных единицах, общепринятых в практике нефтегазового дела. Графики, необходимые для решения задач, приведены в Приложении 3.

Полностью выполненная и должным образом оформленная контрольная работа сдается на проверку не позднее, чем за две недели до начала экзаменационной сессии.

Приложение 1 Таблица П.1

No	Р _{пл} ,	P _{Hac} ,		$\mu_{_{ m H}}$,	$R_{\rm K}$,	r_c ,	Γ,	$\mu_{\scriptscriptstyle \Gamma}$,	1-й ре	ежим	2-й ре	жим	3-й ре	ежим	4-й ре	ежим
			h, м				M^3/M^3		Q,	Pc,	Q,	Pc,	Q,	Pc,	Q,	Pc,
вар.	МПа	МПа		мПа·с	M	M	M / M	мПа∙с	M^3/cyT	МПа	м ³ /сут	МПа	м ³ /сут	МПа	M^3/cyT	МПа
1	20	8	3	1,1	200	0,1	50	0,010	5	18,00	10	12,10	13,75	5,12	15	2,31
2	21	9	4	1,4	210	0,1	55	0,015	5,25	18,90	10,25	13,09	14	6,29	15,25	3,56
3	22	7	5	1,7	220	0,1	60	0,020	5,5	19,80	10,5	14,07	14,25	7,44	15,5	4,79
4	23	11	6	2	230	0,1	65	0,025	5,75	20,70	10,75	15,04	14,5	8,57	15,75	5,99
5	24	10	7	2,3	240	0,1	70	0,030	6	21,60	11	16,01	14,75	9,68	16	7,17
6	25	12	8	2,6	250	0,1	75	0,035	6,25	22,50	11,25	16,98	15	10,78	16,25	8,32
7	12	8	9	2,9	260	0,1	80	0,040	7,5	10,50	10	10,00	12,5	9,500	15	9,000
8	13	7	10	3,2	270	0,1	85	0,045	8,925	11,30	11,55	10,80	14,175	10,300	16,8	9,800
9	14	9	9	3,5	280	0,1	90	0,050	10,45	12,10	13,2	11,60	15,95	11,100	18,7	10,600
10	15	11	8	3,8	290	0,1	95	0,055	12,075	12,90	14,95	12,40	17,825	11,900	20,7	11,400
11	16	10	7	4,1	300	0,1	100	0,060	13,8	13,70	16,8	13,20	19,8	12,700	22,8	12,200
12	17	12	6	4,4	310	0,1	105	0,065	15,625	14,50	18,75	14,00	21,875	13,500	25	13,000
13	18	10	5	4,7	320	0,1	110	0,070	17,55	15,30	20,8	14,80	24,05	14,300	27,3	13,800
14	19	9	4	5	330	0,1	115	0,075	19,575	16,10	22,95	15,60	26,325	15,100	29,7	14,600
15	25	13	20	5,3	340	0,1	120	0,080	6,5	22,40	11,5	16,92	15,25	10,83	16,5	8,43
16	24	12	19	5,6	350	0,1	125	0,085	6,75	21,30	11,75	15,89	15,5	9,92	16,75	7,57

No	Р _{пл} ,	D		П	R_{κ}	r	Γ,		1-й ре	ежим	2-й ре	жим	3-й ре	ежим	4-й ре	ежим
		P _{Hac} ,	h, м	$\mu_{\rm H}$,		r_c ,	M^3/M^3	μ_{Γ} ,	Q,	Pc,	Q,	Pc,	Q,	Pc,	Q,	Pc,
вар.	МПа	МПа		мПа·с	M	M	M/M	мПа∙с	M^3/cyT	МПа	м ³ /сут	МПа	м ³ /сут	МПа	M^3/cyT	МПа
17	23	11	18	5,9	360	0,1	130	0,090	7	20,20	12	14,84	15,75	8,99	17	6,69
18	22	10	17	6,2	370	0,1	135	0,095	7,25	19,10	12,25	13,80	16	8,06	17,25	5,81
19	21	11	16	1,2	380	0,1	140	0,100	7,5	18,00	12,5	12,68	16,25	6,95	17,5	4,71
20	20	10	15	1,4	390	0,1	145	0,105	7,75	16,90	12,75	11,63	16,5	5,99	17,75	3,79
21	10	16	14	1,6	400	0,1	150	0,110	14,08	9,50	35,20	8,75	63,37	7,750	77,45	7,250
22	11	17	13	1,7	410	0,1	140	0,115	13,37	10,50	33,42	9,75	60,15	8,750	73,52	8,250
23	12	15	12	3	420	0,1	130	0,120	7,54	5,84	18,86	5,37	33,95	4,744	41,49	4,431
24	13	18	11	2,2	430	0,1	120	0,125	10,12	5,02	25,29	4,55	45,53	3,923	55,64	3,611
25	14	16	10	2,4	440	0,1	110	0,130	9,00	6,98	22,50	6,52	40,50	5,891	49,50	5,578
26	15	19	9	2,6	450	0,1	100	0,135	7,95	8,85	19,87	8,38	35,77	7,752	43,72	7,440
27	16	10	8	2,8	460	0,1	90	0,140	5,06	14,90	7,36	14,40	9,66	13,900	11,96	13,400
28	17	11	7	3	470	0,1	80	0,145	6,305	15,70	8,73	15,20	11,155	14,700	13,58	14,200
29	18	12	6	3,2	480	0,1	70	0,150	7,65	16,50	10,2	16,00	12,75	15,500	15,3	15,000
30	19	11	5	3,4	490	0,1	60	0,155	9,095	17,30	11,77	16,80	14,445	16,300	17,12	15,800
31	20	12	4	3,6	500	0,1	50	0,160	10,64	18,10	13,44	17,60	16,24	17,100	19,04	16,600
32	19	10	6	3,8	480	0,1	40	0,165	12,285	16,90	15,21	16,40	18,135	15,900	21,06	15,400
33	18	12	8	4	460	0,1	55	0,170	14,03	15,70	17,08	15,20	20,13	14,700	23,18	14,200
34	17	11	10	4,2	440	0,1	70	0,175	15,875	14,50	19,05	14,00	22,225	13,500	25,4	13,000

No	Р _{пл} ,	P _{Hac} ,		П	R_{κ} ,	r	Γ,		1-й ре	ежим	2-й ре	жим	3-й ре	ежим	4-й ре	ежим
			h, м	$\mu_{\scriptscriptstyle \mathrm{H}}$,	$\kappa_{\rm K}$	r_c ,		μ_{Γ} ,	Q,	Pc,	Q,	Pc,	Q,	Pc,	Q,	Pc,
вар.	МПа	МПа		мПа·с	M	M	M^3/M^3	мПа∙с	м ³ /сут	МПа	м ³ /сут	МПа	м ³ /сут	МПа	M^3/cyT	МПа
35	16	9	12	4,4	420	0,1	85	0,180	17,82	13,30	21,12	12,80	24,42	12,300	27,72	11,800
36	15	18	14	4,6	400	0,1	100	0,185	7,53	10,16	18,82	9,69	33,87	9,069	41,39	8,757
37	14	20	16	4,8	380	0,1	115	0,190	8,78	8,57	21,94	8,10	39,50	7,473	48,27	7,160
38	13	19	18	5	360	0,1	130	0,195	10,07	6,98	25,17	6,52	45,30	5,890	55,37	5,578
39	12	18	20	5,2	340	0,1	145	0,200	11,39	5,41	28,49	4,94	51,28	4,320	62,67	4,007
40	20	25	22	2,4	320	0,1	140	0,205	16,15	6,23	40,36	5,77	72,66	5,141	88,80	4,828
41	21	10	24	2,6	300	0,1	135	0,210	8	17,80	13	12,60	16,75	7,07	18	4,92
42	22	11	9	2,8	280	0,1	130	0,215	8,25	18,70	13,25	13,61	17	8,26	18,25	6,18
43	23	13	8	2,3	260	0,1	125	0,220	8,5	19,60	13,5	14,54	17,25	9,26	18,5	7,22
44	24	14	7	1,8	240	0,1	120	0,225	8,75	20,50	13,75	15,48	17,5	10,26	18,75	8,25
45	25	14	6	1,3	220	0,1	115	0,230	9	21,40	14	16,41	17,75	11,26	19	9,28
46	26	16	5	0,8	200	0,1	110	0,235	9,25	22,30	14,25	17,34	18	12,26	19,25	10,31
47	27	12	6	0,3	250	0,1	105	0,240	9,5	23,20	14,5	18,24	18,25	13,17	19,5	11,23
48	28	19	7	0,2	300	0,1	100	0,245	9,75	24,10	14,75	19,14	18,5	14,10	19,75	12,17
49	29	11	8	0,7	350	0,1	95	0,250	10	25,00	15	20,05	18,75	15,04	20	13,12
50	30	19	9	0,2	400	0,1	90	0,255	10,25	25,90	15,25	20,96	19	15,98	20,25	14,08

Таблица П.2

№ вар.	h, м	$\mu_{\scriptscriptstyle \Gamma}$,	D w	r_c ,	Р _{пл} ,	P _{c1} ,	P _{c2} ,	P _{c3} ,	P _{c4} ,	Qaт ₁ ,	Qaт ₂ ,	QaT ₃ ,	Qaт ₄ ,
л≌ вар.	П, М	мПа·с	$R_{\rm K}$, M	M	МПа	МПа	МПа	МПа	МПа	м ³ /сут	м ³ /сут	м ³ /сут	м ³ /сут
1	11	0,01	300	0,1	15	13	11	9	7	209	388	537	656
2	12	0,011	310	0,1	16	14	12	10	8	331	618	861	1060
3	13	0,012	320	0,1	17	15	13	11	9	466	874	1224	1515
4	14	0,013	330	0,1	18	16	14	12	10	613	1154	1623	2019
5	15	0,014	340	0,1	19	17	15	13	11	772	1458	2059	2574
6	16	0,015	350	0,1	20	18	16	14	12	943	1787	2532	3177
7	17	0,016	360	0,1	21	19	17	15	13	1126	2140	3041	3830
8	18	0,017	370	0,1	22	20	18	16	14	1322	2517	3587	4531
9	19	0,018	380	0,1	23	21	19	17	15	1529	2918	4169	5281
10	20	0,019	390	0,1	24	22	20	18	16	1748	3343	4787	6078
11	18	0,02	400	0,1	25	23	21	19	17	1696	3250	4663	5935
12	16	0,019	410	0,1	26	24	22	20	18	1785	3427	4927	6284
13	14	0,018	420	0,1	27	25	23	21	19	1841	3541	5099	6515
14	12	0,017	430	0,1	28	26	24	22	20	1854	3571	5150	6592
15	10	0,016	440	0,1	29	27	25	23	21	1811	3493	5045	6468
16	8	0,015	450	0,1	30	28	26	24	22	1696	3275	4737	6082
17	11	0,014	430	0,1	28	26	24	22	20	2476	4770	6879	8805
18	14	0,013	410	0,1	26	24	22	20	18	3337	6406	9209	11745

№ вар.	h, м	μ_{Γ} ,	$R_{\scriptscriptstyle m K}$, м	r_c ,	Р _{пл} ,	P _{c1} ,	P _{c2} ,	P _{c3} ,	P _{c4} ,	Qaт ₁ ,	Qaт ₂ ,	Qaт ₃ ,	Qaт ₄ ,
л⊻ вар.	п, м	мПа·с	ικ, w	М	МПа	МПа	МПа	МПа	МПа	м ³ /сут	м ³ /сут	м ³ /сут	м ³ /сут
19	17	0,012	390	0,1	24	22	20	18	16	4276	8181	11713	14874
20	20	0,011	370	0,1	22	20	18	16	14	5295	10086	14373	18155
21	23	0,01	350	0,1	20	18	16	14	12	6392	12112	17158	21532
22	26	0,009	330	0,1	18	16	14	12	10	7565	14240	20025	24920
23	22	0,008	310	0,1	16	14	12	10	8	6682	12473	17373	21382
24	18	0,007	290	0,1	14	12	10	8	6	5688	10500	14438	17501
25	14	0,006	270	0,1	19	18	16	14	12	3854	37521	37496	7499
26	10	0,010	300	0,1	19	18	16	14	13	328	426	554	720
27	11	0,012	310	0,1	20	19	17	15	14	296	385	500	650
28	12	0,014	320	0,1	21	20	18	16	15	386	502	653	848
29	13	0,016	330	0,1	22	21	19	17	16	478	621	808	1050
30	14	0,018	340	0,1	23	22	20	18	17	573	744	968	1258
31	15	0,020	350	0,1	24	23	21	19	18	670	871	1133	1473
32	16	0,022	360	0,1	25	24	22	20	19	772	1003	1304	1696
33	17	0,024	370	0,1	26	25	23	21	20	877	1141	1483	1928
34	18	0,026	380	0,1	27	26	24	22	21	987	1283	1668	2168
35	19	0,028	390	0,1	28	27	25	23	22	1101	1431	1860	2418
36	20	0,030	400	0,1	29	28	26	24	23	1219	1585	2060	2678
37	21	0,029	410	0,1	30	29	27	25	24	1480	1924	2502	3252

No non	h w	$\mu_{\scriptscriptstyle \Gamma}$,	D. v	r_c ,	Р _{пл} ,	P _{c1} ,	P _{c2} ,	P _{c3} ,	P _{c4} ,	Qaт ₁ ,	Qaт ₂ ,	Qaт ₃ ,	Qат ₄ ,
№ вар.	h, м	мПа·с	$R_{\rm K}$, M	M	МПа	МПа	МПа	МПа	МПа	м ³ /сут	м ³ /сут	м ³ /сут	м ³ /сут
38	22	0,028	420	0,1	31	30	28	26	25	1783	2318	3014	3918
39	20	0,027	430	0,1	32	31	29	27	26	1855	2411	3135	4075
40	18	0,026	440	0,1	33	32	30	28	27	1903	2474	3216	4180
41	16	0,025	450	0,1	34	33	31	29	28	1921	2498	3247	4221
42	14	0,024	460	0,1	32	31	29	27	26	1739	2261	2939	3820
43	12	0,023	470	0,1	30	29	27	25	24	1534	1994	2592	3369
44	10	0,022	450	0,1	28	27	25	23	22	1318	1713	2227	2895
45	13	0,021	430	0,1	26	25	23	21	20	1757	2284	2969	3860
46	16	0,020	410	0,1	24	23	21	19	18	2205	2866	3726	4844
47	19	0,019	390	0,1	22	21	19	17	16	2652	3447	4482	5826
48	22	0,018	370	0,1	20	19	17	15	14	3087	4013	5217	6782
49	25	0,017	350	0,1	25	24	22	20	19	4894	6363	8271	10753
50	20	0,016	330	0,1	30	29	27	25	24	5247	6822	8868	11528

Таблица П.3

№ вар.	Q, м ³ /сут	h, м	<i>μ</i> _н , мПа · с	m, %
1	22,6	5	2,09	10,0
2	25,3	6	5,87	9,7
3	40,3	7	3,91	9,8
4	7,9	8	1,22	11,0
5	1,2	10	10,84	12,1
6	5,5	9	50,51	10,9
7	20,8	11	46,3	10,5
8	31,8	13	2,66	11,0
9	52,9	15	4,78	11,6
10	83,6	12	7,98	12,4
11	33,2	8	1,34	13,4
12	41,9	7	1,08	13,2
13	27,8	6	3,87	13,1
14	30,9	5	5,05	11,3
15	1,1	2	5,04	7,9
16	7,4	22	78,92	8,5
17	21,6	21	32,91	9,6
18	17,4	23	3,34	11,1
19	25,9	30	7,33	10,3
20	30,5	29	11,23	7,8
21	56,3	17	17,77	8,6
22	73,6	15	23,67	9,4
23	69,3	8	8,03	9,2
24	70,4	33	33,11	9,8
25	57,7	35	26,81	11,2
26	11,8	27	50,22	12,3
27	20,8	21	21,98	14,0

№ вар.	Q, m ³ /cyt	h, м	$\mu_{\scriptscriptstyle ext{H}}$, мПа \cdot с	m, %
28	44,1	2	1,11	8,6
29	38,7	4	2,09	9,3
30	11,0	6	13,21	10,5
31	7,9	8	18,93	11,2
32	12,7	12	75,3	12,9
33	19,4	13	109,3	14,2
34	25,2	14	1,11	13,5
35	34,1	18	1,02	12,2
36	41,9	43	4,98	10,8
37	58,4	23	7,23	11,2
38	49,5	37	98,41	7,9
39	61,2	33	52,01	8,3
40	77,9	23	47,54	8,8
41	80,3	5	21,98	9,3
42	23,5	7	29,43	11,2
43	27,3	20	17,77	12,1
44	29,9	31	11,94	9,6
45	13,5	26	8,45	10,4
46	2,6	14	90,23	10,9
47	3,6	5	55,32	10,5
48	11,3	6	17,01	11,2
49	15,6	9	9,65	13,4
50	6,3	11	9,82	14,1

1-й ва	приант	2-й ва	риант	3-й ва	ариант	4-й ва	ариант	5-й ва	риант	6-й ва	приант
t, мин	Рс, МПа										
0	3,83	0	7,642	0	9,261	0	5,7	0	14,36	0	16,65
10	3,97	15	8,985	5	9,29	190	6,9	10	14,512	60	17,06
78	4,69	30	9,044	15	9,359	430	8	20	14,716	120	17,28
225	6,84	45	9,24	25	9,369	1130	9,71	30	14,87	180	17,58
365	8,15	60	9,23	35	9,398	1940	10,5	40	15,02	240	17,71
525	9,20	75	9,348	45	9,408	2900	10,88	60	15,347	360	17,92
825	10,30	90	9,466	55	9,427	3740	11,02	80	15,655	480	18,24
915	10,54	120	9,574	75	9,526	4460	11,1	100	15,938	600	18,5
1005	10,65	150	9,76	105	9,624	5180	11,14	150	16,282	720	18,77
1155	10,78	180	9,995	135	9,712	6080	11,17	180	16,574	840	18,88
1335	10,96	1160	12,242	165	9,82	7160	11,21	210	16,902	960	19,08
1515	11,07	2585	12,428	180	9,869	8244	11,22	240	17,203	1140	19,23
1695	11,19	4020	12,517	1490	11,36	9404	11,24	300	17,47	1350	19,41
1815	11,24	6000	12,556	2670	11,9			360	17,924	1457	19,53
2055	11,30	7030	12,575	4070	12,204			480	18,281	1517	19,64
2295	11,36	8910	12,615	5495	12,248			600	18,739	1637	19,69
2415	11,39			6980	12,272			720	19	1817	19,72
2565	11,45			7295	12,277			840	19,171	1997	19,76
				8450	12,29			960	19,29	2177	19,8
								1080	19,381	2357	19,82
								1200	19,455	2537	19,83
								1320	19,516	2717	19,87
								1440	19,568	2848	19,88
								1560	19,613		
								1680	19,63		

7-й ва	ариант	8-й ва	риант	9-й ва	риант	10-й в	ариант	11-й в	ариант	12-й в	ариант
t, мин	Рс, МПа	t, мин	Рс, МПа	t, мин	Р _с , МПа	t, мин	Рс, МПа	t, мин	Рс, МПа	t, мин	Рс, МПа
0	15,18	0	8,2	0	7,593	0	7,858	0	8,358	0	4,326
10	15,407	65	8,4	10	7,671	4	7,945	15	8,442	18	4,359
20	15,626	109	8,4	27	7,743	12	8,339	30	8,501	29	4,372
30	15,831	150	8,5	69	7,903	17	8,524	45	8,521	53	4,408
40	16,024	234	8,5	94	7,978	24	8,696	75	8,57	79	4,452
60	16,383	318	8,6	189	8,092	32	8,829	90	8,619	101	4,467
80	16,71	423	8,7	251	8,12	45	8,947	105	8,639	124	4,484
100	17,002	591	8,8	1287	8,442	55	9,01	120	8,678	149	4,503
120	17,262	948	8,9	3639	8,774	64	9,048	150	8,698	176	4,521
150	17,589	1179	9	5204	8,87	80	9,108	180	8,756	237	4,554
180	17,859	3820	10,2	8187	9,025	90	9,134	1540	9,378	284	4,572
210	18,082	7485	11,3	9453	9,073	1111	9,543	2940	9,564	392	4,617
240	18,265	14625	12,7	12338	9,18	2549	9,657	4260	9,639	603	4,669
300	18,525	21390	13,6	13762	9,226	4279	9,718	6870	9,8	891	4,719
360	18,715	25728	14,3	18092	9,348	7806	9,791	8360	9,83	1008	4,744
420	18,849	37555	16,1	19599	9,387	10097	9,816	9720	9,842	1139	4,767
480	18,949	45730	16,9	22347	9,448	11279	9,823	11174	9,855	1351	4,791
600	19,086	51815	17	40144	9,71			12610	9,865	2769	4,937
720	19,171	64815	17,1	54377	9,74					5631	5,108
840	19,233	90815	17,2	62553	9,77					7367	5,169
960	19,281			88513	9,84					9287	5,215
1080	19,316			139702	9,91					12461	5,251
1200	19,345									14367	5,273
1320	19,37									21728	5,314
1440	19,39									34890	5,342

13-й в	ариант	14-й в	ариант	15-й в	ариант	16-й в	ариант	17-й в	ариант	18-й в	ариант
t, мин	Рс, МПа										
0	12,636	0	9,72	0	10,548	0	15,039	0	5,837	0	11,28
7	12,756	31	9,729	10	11,96	6	15,088	20	5,935	20	11,34
12	12,925	36	9,765	25	12,804	11	15,215	35	6,064	40	11,51
17	13,074	51	9,83	40	13,599	21	15,321	50	6,205	60	11,73
27	13,371	56	9,873	55	14,158	26	15,411	65	6,315	80	11,83
32	13,519	66	9,922	70	14,54	37	15,529	80	6,453	100	11,93
37	13,667	76	9,971	100	15,306	48	15,657	95	6,539	120	11,98
42	13,816	86	10,035	130	15,933	58	15,735	110	6,62	140	12,15
57	14,151	116	10,205	190	16,708	73	15,843	125	6,705	260	13,26
67	14,299	126	10,261	720	17,707	88	15,971	1125	10,352	280	13,38
77	14,388	171	10,442	1580	18,1	118	16,196	2505	12,878	300	13,56
87	14,467	186	10,517	3590	18,612	148	16,353	4225	13,69	320	13,74
107	14,556	209	10,606	4360	18,67	178	16,461	5390	13,732	340	13,92
147	14,616	246	10,75			209	16,503	7115	13,882	360	14,1
168	14,616	261	10,791			457	16,53	8475	13,993	380	14,26
190	14,646	336	11,08			1240	16,549	12180	14,101	1080	16,72
368	14,697	366	11,2			2980	16,562	21330	14,25	1815	17,49
907	14,758	656	11,942							4540	17,62
		928	12,337							5705	17,67
		1021	12,405							8320	17,68
		1271	12,569								
		1626	12,656								
		2441	12,726								
		4166	12,78								

19-й в	ариант	20-й в	ариант	21-й в	ариант	22-й в	ариант	23-й вариант		24-й вариант	
t, мин	Рс, МПа	t, мин	Рс, МПа	t, мин	Р _с , МПа						
0	8,114	0	7,936	0	11,694	0	14,805	0	15,64	0	12,301
5	8,404	10	10,096	20	12,1	60	14,983	15	15,9	30	12,809
10	8,987	20	10,161	35	12,791	90	15,093	30	16,07	75	13,117
15	9,19	30	10,237	70	13,381	120	15,202	55	16,3	1360	14,237
30	9,65	40	10,294	95	13,645	180	15,341	190	16,71	5920	15,105
48	9,98	51	10,365	150	13,863	240	15,451	1060	18,29	10580	15,633
89	10,53	60	10,421	260	14,364	300	15,518	2575	18,93	12815	15,868
135	10,87	82	10,534	370	14,674	1070	16,093	4040	19,01	20365	15,985
251	11,488	100	10,655	485	14,966	2825	16,472	6960	19,12	33360	16,08
1119	13,143	120	10,76	855	15,756	4055	16,522	8155	19,14	45930	16,15
2365	13,735	1075	14,08	1610	16,591	5503	16,574	10430	19,16	55855	16,21
4225	14,25	2815	16,042	3140	16,684	6980	16,612	12560	19,18	65920	16,26
5310	14,374	4110	16,587	4390	16,733	9150	16,632	14580	19,19	75260	16,28
6735	14,437	5490	16,836	6065	16,775			16700	19,21		
8135	14,456	7113	17,052	7465	16,804			19900	19,22		
9705	14,483	8308	17,079	9050	16,829						
11240	14,488	10000	17,08								
12589	14,518	11185	17,086								
14020	14,56	12676	17,096								
15739	14,56	14132	17,11								
17180	14,56										

25-й в	ариант	26-й в	ариант	27-й в	ариант	28-й в	ариант	29-й вариант		30-й вариант	
t, мин	Рс, МПа	t, мин	Рс, МПа	t, мин	Рс, МПа						
0	7,112	0	6,995	0	8,476	0	7,681	0	11,772	0	14,715
10	7,122	1245	7,188	15	8,525	1065	8,49	1965	17,927	12	15,206
30	7,132	1925	7,265	30	8,558	1965	9,179	3185	17,958	17	15,794
40	7,142	3255	7,596	45	8,592	4188	10,358	4685	17,987	30	16,187
2795	7,711	4290	7,856	60	8,613	5985	11,101	6115	18,021	51	16,593
4235	8,079	6975	8,593	1550	9,286	6881	11,471	7555	18,056	81	16,853
7200	8,707	9060	9,165	1885	9,42	8265	11,858	9195	18,095	95	17,003
8375	8,998	13105	10,185	3185	9,984	10223	12,268	10396	18,127	126	17,189
15404	10,789	14749	10,652	4755	10,687	11663	12,528	12055	18,165	157	17,342
18509	11,572	17134	11,261	6070	11,173	12645	12,765	13504	18,194	861	18,825
26079	13,149	23025	12,668	8655	12,075	14047	13,1	14530	18,216	2848	19,184
28904	13,727	24844	13,15	10313	12,51	16095	13,536	15951	18,245	4078	19,27
30035	14,07	32189	14,576	11869	12,857	17145	13,734	17674	18,27	5308	19,326
40160	15,74	33165	14,755	14385	13,353	18471	13,948	18805	18,288	6560	19,372
43160	16,186	40825	15,929	15851	13,598	20368	14,129	24560	18,322	10035	19,448
51919	16,83	47880	16,6	17235	13,838	23255	14,239	33450	18,334		
56065	17,01	49385	16,672	21615	14,151	27920	14,284	45500	18,353		
68675	17,232	55829	16,952	31614	14,311	34225	14,374	67770	18,369		
90575	17,388	62179	17,101	38984	14,39	45905	14,433				
133325	17,597	67674	17,223	53254	14,494						
194480	17,772	75200	17,441								
		82084	17,566								
		97540	17,819								

31-й в	ариант	32-й в	ариант	33-й вариант		34-й вариант		35-й вариант		36-й вариант	
t, мин	Рс, МПа	t, мин	Рс, МПа	t, мин	Р _с , МПа	t, мин	Рс, МПа	t, мин	Рс, МПа	t, мин	Рс, МПа
0	9,01	0	11,772	0	13,273	3	9,282	0	6,743	0	4,92
40	9,73	10	12,222	15	13,342	6	9,308	6	6,818	80	5,99
55	9,97	15	12,345	30	13,538	9	9,355	12	6,901	180	6,94
70	10,1	25	13,112	45	13,832	15	9,44	18	6,982	300	7,71
100	10,34	55	14,055	60	14,126	21	9,523	36	7,224	480	8,59
130	10,48	95	15	85	14,421	33	9,67	42	7,304	600	9,09
874	14,72	145	15,855	105	14,617	45	9,802	48	7,381	780	9,66
1270	15,84	175	16,981	125	15,009	51	9,862	54	7,457	960	10,07
1900	16,07	180	17,089	155	15,206	57	9,919	96	7,923	1200	10,4
2440	16,21	185	17,246	185	15,389	78	10,093	160	8,513	1440	10,59
3320	16,31	195	17,321	790	17,175	108	10,294	190	8,747	1680	10,71
3600	16,35	205	17,576	1395	18,186	168	10,58	220	8,956	2040	10,81
3920	16,37	225	17,913	1895	18,547	228	10,77	280	9,319	2760	10,9
4270	16,41	235	17,933	2865	18,78	318	10,952	340	9,615	3660	10,94
5100	16,43	385	18,149	4125	18,996	348	10,996	420	9,927	4260	10,95
5520	16,44	415	18,188	5610	19,083	548	11,166	540	10,255	4860	10,96
6180	16,5	2455	18,325	8450	19,22	688	11,221	720	10,546	5210	10,97
		3310	18,365			778	11,245	900	10,702		
		4305	18,405			928	11,271	1080	10,789		
						1288	11,301	1260	10,84		
						1888	11,318	1440	10,87		
						2248	11,322	1800	10,902		
						2608	11,325	2160	10,915		
								2920	10,92		

37-й в	ариант	38-й в	ариант	39-й в	ариант	40-й в	ариант	41-й вариант		42-й вариант	
t, мин	Рс, МПа	t, мин	Рс, МПа	t, мин	Рс, МПа						
0	8,36	0	9,235	0	7,259	0	10,722	0	12,753	0	12,086
260	9,543	180	10,321	15	7,563	15	11,291	15	13,244	10	12,567
520	9,996	360	10,812	30	7,916	30	11,419	30	13,302	20	12,586
780	10,226	540	11,029	45	8,014	45	11,527	45	13,342	30	12,616
1040	10,563	720	11,176	60	8,102	60	11,644	60	13,42	40	12,645
1300	10,689	900	11,235	150	8,583	1020	14,666	1580	14,136	895	13,185
1730	10,741	1080	11,278	1635	10,618	1500	15,147	2725	14,332	2390	13,459
1990	10,724	1260	11,294	3445	11,933	2610	15,627	4390	14,431	3980	13,675
2250	10,721	1440	11,316	5105	12,087	3900	15,696	5820	14,48	5115	13,803
2510	10,726	1620	11,326	6060	12,119	5350	15,725	7030	14,489	7020	13,911
2770	10,741	1800	11,329	7735	12,217	6750	15,733	8480	14,499	8060	13,94
3030	10,743	1980	11,331	8979	12,263	8200	15,764	9300	14,515	9470	13,96
3290	10,737	2160	11,333	10325	12,302	9300	15,77	10500	14,52	10949	13,969
3550	10,736	2340	11,334	11790	12,325	10550	15,82	11130	14,536	11770	13,99
3810	10,734	2520	11,336	12450	12,335	12440	15,83	12460	14,551	13120	14,02
4070	10,74	2700	11,338	14600	12,375	14600	15,85	14400	14,555	14400	14,04
4330	10,752	3060	11,34					15640	14,56	16500	14,07
4590	10,747	3240	11,342							19880	14,09
4850	10,742	3600	11,344								
5110	10,743	3780	11,345								
5370	10,746	3960	11,346								
		4140	11,347								

43-й в	ариант	44-й в	ариант	45-й в	ариант	46-й в	ариант	47-й в	ариант	48-й вариант	
t, мин	Рс, МПа	t, мин	Рс, МПа								
0	12,115	0	5,66	0	5,827	0	5,091	0	5,248	0	12,26
40	12,213	40	6,37	8	6,22	20	5,691	10	5,42	5	12,39
60	12,233	80	6,68	13	6,24	35	5,709	20	5,847	10	12,51
110	12,312	120	6,88	18	6,259	50	5,72	30	6,151	15	12,64
130	12,37	180	7,07	23	6,269	65	5,743	40	6,416	20	12,8
990	14,205	260	7,32	28	6,289	80	5,772	50	6,589	25	12,94
1300	14,303	340	7,59	33	6,299	95	5,794	60	6,731	30	13,13
2440	14,362	420	7,85	343	6,918	110	5,815	70	6,89	35	13,3
4010	14,381	580	8,28	663	7,328	125	5,837	80	6,973	40	13,39
5500	14,391	700	8,64	1728	7,752	1155	6,18	90	7,056	45	13,51
7300	14,401	780	8,85	2503	7,819	2605	6,337	100	7,114	50	13,65
8880	14,422	900	9,2	3978	7,877	4075	6,468	110	7,19	55	13,89
9550	14,428	1200	9,9	5408	7,926	5605	6,563	120	7,279	60	14,05
11400	14,438	1500	10,6	6903	7,946	6945	6,612	420	7,72	65	14,17
12770	14,448	1860	11,41	8303	7,966	8445	6,694	1460	8,123	70	14,33
15600	14,455	1995	11,63	12753	7,981	9925	6,76	1950	8,182	75	14,48
17280	14,461	2240	11,99	15193	7,993	11270	6,79	2890	8,254	80	14,6
		2720	12,41			18710	6,841	3310	8,28	85	14,72
		3160	12,47			24220	6,887	4320	8,339	90	14,83
		3880	12,51			35629	6,916			105	15,25
		4660	12,56			47014	6,926			120	15,64
		5120	12,57							150	16,59
										380	17,11
										540	17,24
										660	17,3

49-й ва	ариант	50-й вариант				
t, мин	Ре, МПа	t, мин	Рс, МПа			
0	5,278	0	4,777			
45	6,112	15	5,445			
100	6,435	30	5,513			
1225	7,554	1065	5,857			
2595	8,368	2560	6,033			
4015	9,329	4010	6,18			
5430	10,026	5370	6,298			
6885	10,457	6870	6,396			
8485	10,83	8380	6,484			
9750	11,056	9790	6,563			
11170	11,183	11274	6,641			
12700	11,262	12700	6,71			
14079	11,28	14164	6,769			
15509	11,368	15940	6,828			
17219	11,405	19999	6,87			
18409	11,583	28431	6,907			
19829	11,611	39829	6,931			
21264	11,618	51299	6,945			

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ДАГЕСТАН

Государственное бюджетное профессиональное образовательное учреждение «Технический колледж им. Р.Н. Ашуралиева»

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Основы геофизических и гидродинамических исследований скважин»

Вариант №____

Выполнил: студент группы

17БНГС3-4 Иванов И.А.

Проверил Курбанов Р.А.

Приложение 3

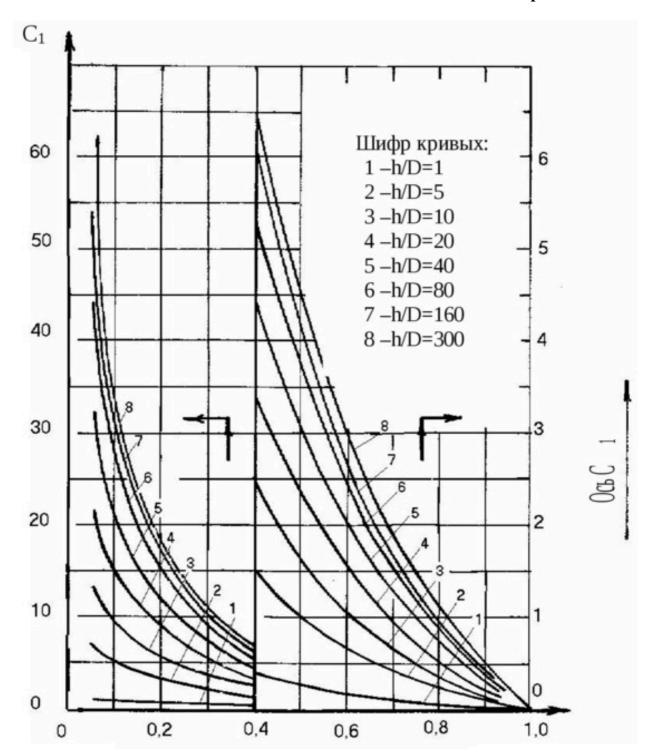


График В.И. Щурова для определения коэффициента C_1

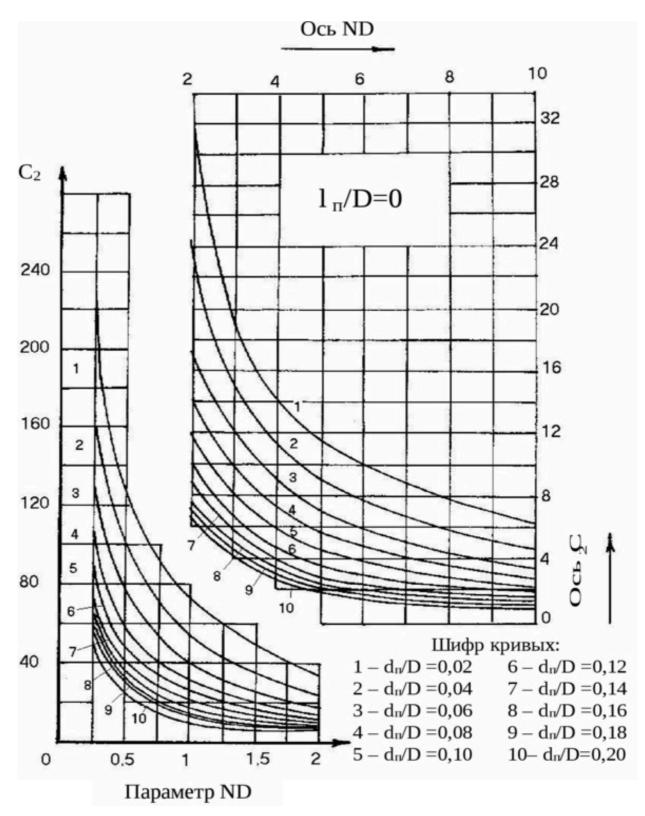


График В.И. Щурова для определения коэффициента C_2 , когда l/D=0

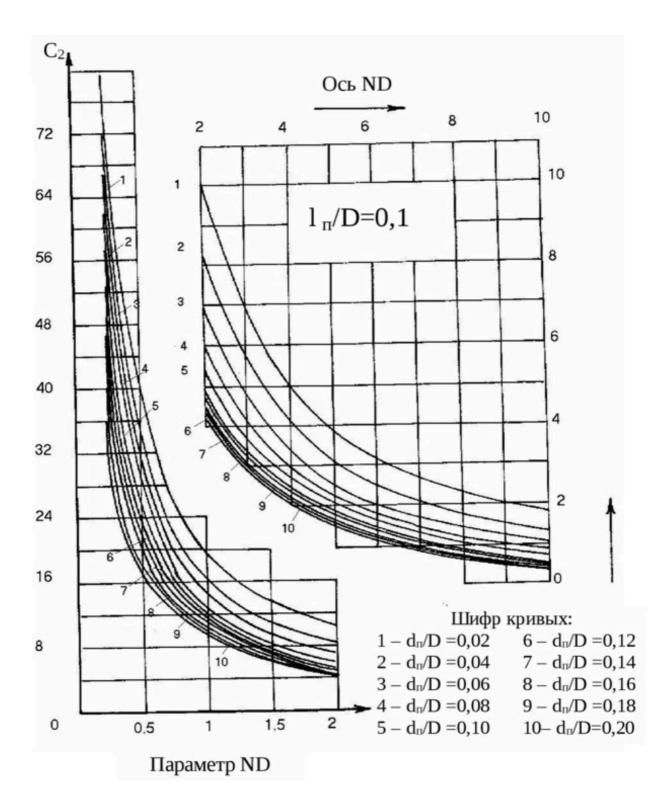


График В.И. Щурова для определения коэффициента C_2 , когда l/D=0.1

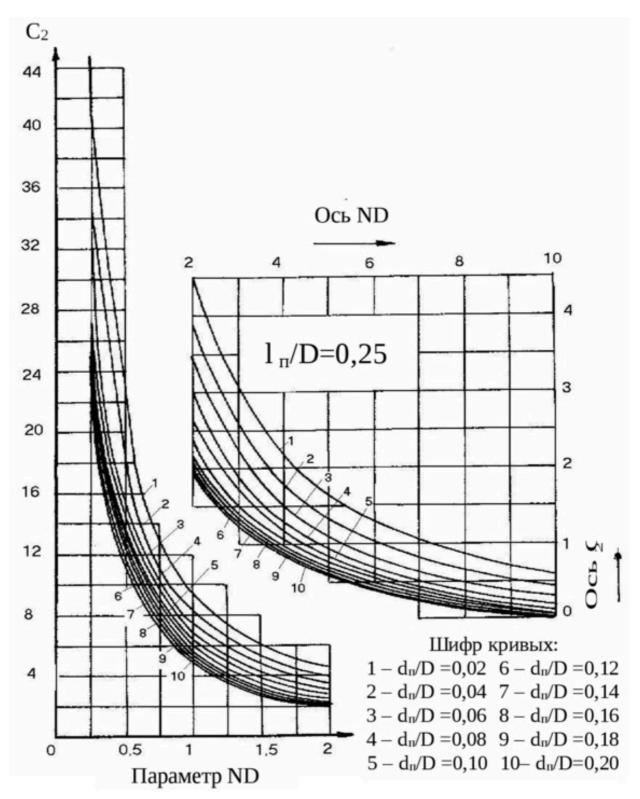


График В.И. Щурова для определения коэффициента C_2 , когда l/D=0.25

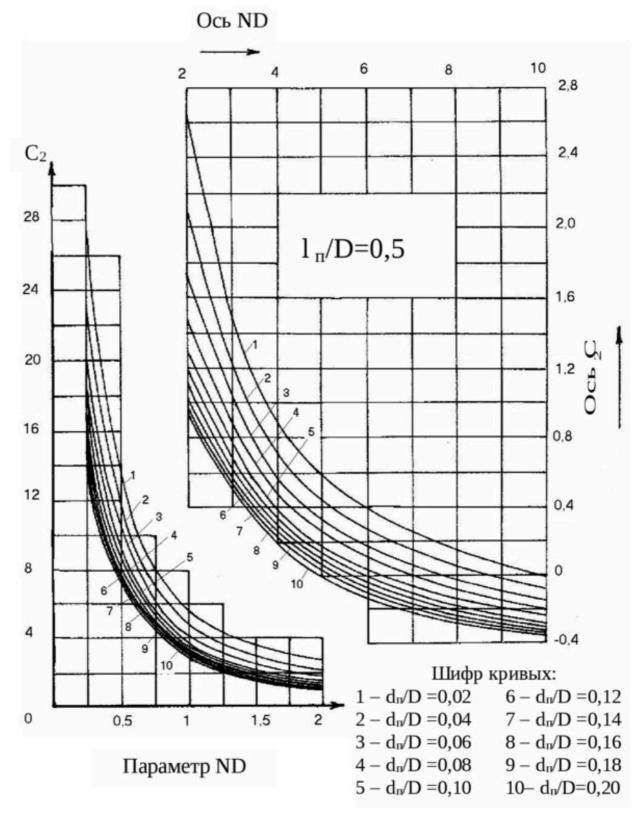


График В.И. Щурова для определения коэффициента C_2 , когда l/D=0.5

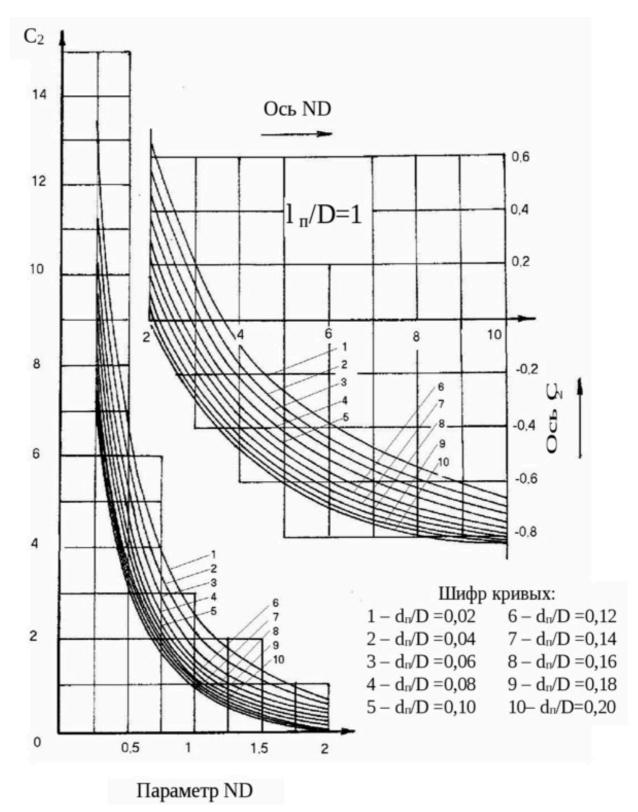


График В.И. Щурова для определения коэффициента C_2 , когда l/D=1